Не пропусти
Главная » Бытовая техника » Сверхъяркий светодиод: определения, история, параметры

Сверхъяркий светодиод: определения, история, параметры

Сверхъяркий светодиод – это рекламная уловка, эпитет, на который продавцы заманивают доверчивых покупателей. В действительности обращать внимание полагается исключительно на КПД.

Мало изучения характеристик светодиода в данном вопросе, ограничения накладывает физиология человека. Чувствительность глаза к волнам зелёного цвета на порядок превышает аналогичный параметр для красного. Мало вычислить плотность потока мощности, мало убедиться, что тепловой режим не выходит за рамки дозволенного, благодаря хорошему КПД. Требуется наложить получившийся результат на особенности человеческого зрения.

Теперь становится понятно, что заявления фирм-производителей о сверхъярких светодиодах – исключительно рекламный трюк. Полагается оценивать продукт в комплексе, но даже потом помните – дорогой читатель – что когерентное свечение опасно для глаза. Не стоит проверять продукцию на собственном зрении.

На обычную 10-ваттную светодиодную лампочку уже больно смотреть, когда излучающая матрица светит сквозь матовое стекло. Авторы уверены, что любую представленную допустимо назвать сверхъярким светодиодом.

Большинство диодов работает за счёт эффекта люминесценции, открытой в начале XX века. Считается, что первые светодиод изготовил нечаянно Генри Джозеф Раунд, когда оценивал выпрямляющие свойства карбида кремния. Примечательно, что минерал карборунд на планете Земля практически не встречается, хотя чрезвычайно распространён в звёздных атмосферах.

Сверхъяркий светодиод: определения, история, параметры

Оттуда и прилетел метеорит, оказавшийся не по зубам Юджину Ачисону в 1891 году. Затея землекопа вполне понятна – он решил, что обнаружил на погибшем астероиде алмазы и захотел втихую продать находку. Но ювелир заметил, что отсутствуют характерные признаки драгоценнейшего камня на планете. Причём произошло это годы спустя.

Карборунд Генри Джозефа Раунда был искусственным. На начало XX века минерал уже научились синтезировать. По твёрдости камень уступает лишь алмазу. Исследуя кристаллический детектор для радио (подбодрённый опытом прочих исследователей, уже заимевших патенты), Генри обнаружил свечение. Он немедленно написал в редакцию журнала Электрический мир и сообщил указанные сведения:

  1. При напряжении 10 В переменного тока начинают светиться образцы карборунда жёлтым.
  2. По мере повышения разницы потенциалов вплоть до сетевых 110 В свечение демонстрируют все подопытные кристаллы.
  3. По мере повышения напряжения в спектре, помимо жёлтого, отмечаются зелёный, оранжевый и синий цвета.
  4. Отдельные материалы светятся лишь с краю, прочие демонстрируют объёмный эффект.
  5. Явление не объясняется термоэлектричеством.

Свечение возникает при прямом смещении p-n-перехода. При большом приложенном напряжении в кристалл проникает немалое число неосновных носителей заряда. Процесс объясняется туннельным эффектом. Когда «заезжие гастролёры» начинают рекомбинировать с основными носителями заряда, излишек энергии превращается в свет. Так объясняется факт, что при низких напряжениях свечения Генри Джозеф Раунд не наблюдал.

Однако не все так просто. Диоды Шоттки – представленный карборундом с металлическими контактами – способны светиться и при отрицательном приложенном напряжении. Схема в точности аналогична, но при значительной разнице потенциалов происходит лавинный пробой перехода. Атомы полупроводника ионизируются разогнавшимися носителями заряда, обратная рекомбинация производится с излучением фотона света.

Внимание! Современные светодиоды излучают исключительно при прямом смещении p-n-перехода, когда на анод подаётся положительный потенциал.

Работы Раунда повторены россиянином Лосевым в 1928 году. Учёный на кристаллическом детекторе сумел получить свечение и установил, что первые образцы светятся лишь при униполярном подключении, а для прочих направление постоянного тока не имеет значения. Попытки осмыслить факт не привели к результату. Но подтвердилось заключение Раунда, что эффект не связан с термоэлектрическим нагревом.

Началом светодиодной эры считают ранние 60-е годы, когда появились первые карборундовые плёнки. КПД первых образчиков оказался потрясающе мал и составлял 0,005%. Причина проста — карбид кремния далеко не лучший материал для изготовления сверхъярких диодов. Последнее неосуществимо на данном этапе технологии.

В начале 90-х карборунд исчез с прилавков. Последние голубые светодиоды излучали в диапазоне 470 нм с КПД 0,03%.

Уже в 50-е годы полупроводники из группы AIIBVI были неплохо изучены. Производился постоянный поиск новых технических решений. На свет появились светодиоды из полупроводников класса AIIIBV, на примере которых учителя физики поясняют явление примесной проводимости. Материалы подобного типа искусственного происхождения, в природе не обнаружены. Легируя галлий мышьяком, учёные получали новое поле для исследований. Примеси вводились на подложку жидкофазной или газофазной эпитаксией.

К 1962 году уже появились на лазеры на основе описанного материала. Им пророчили большое будущее в космической отрасли, годились для связи и измерений. Серийный выпуск светодиодов на основе арсенида галлия предприняла компания Texas Instruments. Цена штуки составляла 130 долларов. Сегодня стоимость светодиодов сильно понизилась, и арсенид галлия массово применяется для создания пультов управления, устройств связи и прочего.

КПД известных материалов оказывался слишком мал для создания сверхъярких светодиодов. Так Холоньяк и Бевака пришли в 1962 году к необходимости фосфорилирования арсенида галлия для улучшения характеристик. Особенностью новых приборов стала высокая когерентность излучения. Это означало, что аппаратуру связи ждут дальнейшие усовершенствования, однородность пучка играет большую роль.

Сверхъяркий светодиод: определения, история, параметры

Прежде речь шла о разработках преимущественно инженеров фирмы IBM, если не считать секретных проектов НАСА. В 1962 году в борьбу включилась знаменитая General Electric. Выращивая кристаллы методом газофазной эпитаксии, инженеры компании добились заметных успехов. Быстро удалось повысить КПД устройств, но когерентность излучения сильно снизилась. Цена Дженерал Электрик вдвое превышала Texas Instruments, партия вышла мизерной.

В 1968 году Монсанто выкупили права и занялись массовым выпуском светодиодов на основе фосфорилированного арсенида галлия. Объем продаж ежегодно рос как минимум вчетверо, но в абсолютном отношении оставался микроскопическим. Появляются наконец первые светодиодные цифровые дисплеи (табло).

Параллельно развивалась технология производства фосфида галлия. Каждая фирма отрасли билась над собственным неповторимым материалом. Фосфидом галлия занялись Лаборатории Белла. Вероятно, это не было продуманной стратегией, фирмы боялись взаимного поглощения. Хотя настораживает факт однотипности.

Светодиоды фосфида галлия позволяли получить жёлтое и красное свечение. Белл Лабс начала разработки заодно с прочими, в начале 60-х. Что наталкивает на мысль о спланированности акции. Первые публикации были независимыми и сделаны лишь двумя учёными (1964 год):

Переходы светодиодов из фосфида галлия, легированные оловом, названы их именами. Получены данные, что оптические свойства сильно улучшаются внедрением примеси азота. Отжигая структуру полупроводника после её выращивания, КПД сумели повысить до 2%. Одновременно производился поиск новых цветовых качеств. Так создали диоды на основе фосфида галлия, дающие зелёный оттенок, КПД составлял 0,6%.

Однако! КПД зелёных светодиодов ниже, но из-за повышенной восприимчивости глаза к зеленому диапазону они казались ярче красных.

Чтобы светодиод стал сверхъярким, он характеризуется большим КПД. Логика элементарная. Чем выше ток, тем больше потери на омическом сопротивлении контактов. Следовательно, для получения большой яркости при низком КПД ток предельно повышается. Полупроводник не выдержит и расплавится. Недаром первый лазер работал при охлаждении до 77 К. Помимо физических качеств это обеспечивало надлежащее охлаждение.

Идеальный светодиод с КПД 100% излучает один фотон на каждый инжектированный электрон. Это называется квантовым выходом, равным в идеале единице. В реальном светодиоде эффективность оценивается отношением мощности оптического излучения к току инжекции.

Испущенные фотоны должны уходить в пространство. Для этого по возможности площадь p-n-перехода открывается. В реальности значительная часть фотонов остаётся внутри. Следовательно, каждая конструкция, помимо прочего, характеризуется оптическим выходом. Обычно параметр становится главным лимитирующим фактором, едва достигая 50%.

Под КПД светодиода принято понимать отношение числа испущенных фотонов к подведённой мощности. Обычно на p-n-переходе падает напряжение порядка полутора вольт, а дальше ток повышается по линейному закону. Следовательно, мощность теряется на смещение запирающего слоя, излучение и нагрев омического сопротивления. На начало XXI века нормальным считался КПД светодиода в 4% (учитывая оптический выход).

Чтобы повысить отдачу и получить наконец-то сверхъяркий светодиод, инженеры стали искать новые конструктивные решения.

Увеличение светимости диода достигается поддержанием высокой концентрации носителей. Методикой достижения становится создание двойного p-n-перехода. В этом случае излучательный слой окружён полупроводниками иного типа проводимости с обеих сторон, увеличивая площадь заброса неосновных носителей. Конструкция выглядит как 5-слойный сандвич:

  1. В центре находится активный излучательный слой.
  2. С обеих сторон он охватывается полупроводниками, что обусловливает наличие двух запирающих слоёв.
  3. Контакты покрывают наружные полупроводники по всей площади для улучшения растекания тока.

От толщины активной зоны зависит квантовый выход. График нелинейный и демонстрирует ярко выраженный пологий или скошенный горб. Соответственно, значение толщины требуется выбирать из его пределов, составляющих десятки микрон. Опыты показывают, что повышения квантового выхода добиваются слабым легированием активной области. Количество атомов примеси не превышает десяти в семнадцатой степени единиц на кубический сантиметр. В целом процесс сравнительно слабо изучен.

Увеличение инжекции достигается легированием крайних слоёв. Концентрация примеси здесь, как минимум, на порядок ниже, чем в предыдущем случае, либо в аналогичное количество раз выше. Хотя барьерные и активный слои по определению представлены разными материалами, важно, чтобы их кристаллические решётки оказывались идентичными по структуре. С увеличением рассогласования квантовый выход резко падает.

О admin

x

Check Also

Электромагнитный пускатель: типы, устройство, характеристики

Электромагнитный пускатель (магнитный пускатель) – автоматическое устройство коммутации обмоток, как правило, асинхронного двигателя. Пускозащитное реле холодильника допустимо отнести к указанному классу устройств. К 60-му году ...

Кнопочный пост: схемы и специальные устройства

Кнопочный пост – это устройство, служащее для местного и дистанционного управления замыканием цепей катушек, контакторов, реле, цепей двигателей. Иногда их называют кнопочными станциями. Согласно определению ...

Эффект Пельтье: применимость, суть, оптимизация, квантовая теория

Эффект Пельтье – это процесс, сопровождающийся появлением разницы температур на двух различных материалах при прохождении по ним электрического тока. Впервые объяснён академиком и изобретателем Ленцем. ...

Электрическое напряжение: характеристики, влияние, история

Электрическое напряжение – величина, характеризующая напряжённость электрического поля внутри проводника. Термин кажется противоречащим общепринятому, но ниже последует объяснение. Физики пока не в состоянии сказать, что ...

Разделительный трансформатор: назначение и тестирование

Разделительный трансформатор – это устройство, обеспечивающее гальваническую развязку первичной и вторичной цепи, развязку по переменному току, и имеющее среди конструктивных особенностей усиленную изоляцию между обмотками. ...

Плоский конденсатор: формулы, особенности, конструкция

Плоский конденсатор – физическое упрощение, взявшее начало из ранних исследований электричества, представляющее собой конструкцию, где обкладки носят форму плоскостей и в любой точке параллельны. Люди ...

Токопроводящая паста: история, патенты, особенности

Токопроводящая паста – это субстанция, вязкой консистенции, проводящая электрический ток. Сегодня веществам рассматриваемого класса находится, как минимум, два применения: изготовление печатных плат и смазка контактов. ...

Ростер — что это такое, принцип работы устройства и как выбрать по мощности, объему, бренду и стоимости

Ростер — что это такое, обзор лучших бытовых моделей с описанием, производителями и ценами Если у вас относительно небольшая кухня, то вместо привычной духовки вы ...

Диэлектрики и проводники в электрическом поле: особенности и поведение

Диэлектрики и проводники в электрическом поле – тема статьи. Ниже рассмотрены физические процессы, происходящие внутри тел и снаружи. Рекомендуется ознакомиться с обзорами на тему электрического ...

Кварцевые часы лучшие

В мужском сознании преобладает стереотип: самые качественные и долговечные – кварцевые часы. Отчасти в этом есть доля истины, не зря же кварцевый часовой механизм популярен ...

Коллекторный двигатель: конструкция, история развития, особенности

Коллекторный двигатель – это электрический мотор, где движение ротора сопровождается постоянной внутренней перекоммутацией обмоток. Главной деталью считается коллектор. На фото показано, что деталь трудно перепутать. ...

Ремонт стиральной машины LG WD 10120 ND: от инструкции к результатам

Предыстория краткая: стиральную машинку перевозили между городами, транспортировочные болты затерялись и оказались позаимствованы у Samsung. Отличались видом, потому что WD 10120 ND в нутре несёт ...

Фазное напряжение: стандартизация параметров и особенности

Фазное напряжение – это разница потенциалов между фазным проводом и нейтралью. В современных сетях доминируют трёхфазные напряжения. Под фазой понимается электрический сигнал синусоидальной формы. Он ...

Электронный дроссель: типы, схемы, применение

Электронный дроссель – это специализированное, употребляемое в среде профессионалов, жаргонное обозначение простейших твердотельных стабилизаторов. Сложно, сказать, кто придумал это странное название, но оно периодически употребляется ...

Тиристорный регулятор: схемы, управление, быстродействие

Тиристорный регулятор – устройство для подстройки мощности передаваемой электрической энергии, использующее в конструкции тиристорный силовой ключ. Применяется для изменения скорости вращения двигателей, силы светимости приборов ...

Электрический фильтр: особенности и разновидности

Электрический фильтр – устройство для подавления или, напротив, отделения некой составляющей сигнала. Речь, к примеру, о частоте либо фазе. По амплитуде обычно электрические сигналы не ...

Рейтинг@Mail.ru